

## **Discrete-Time Signals and Systems**

## **1. Discrete-Time Signals and Systems**

- signal classification -> signals to be applied in digital filter theory within our course,
- some elementary discrete-time signals,
- discrete-time systems: definition, basic properties review, discrete-time system classification, input-output model of discrete-time systems -> system to be applied in digital filter theory within our course,
- Linear discrete-time time-invariant system description in time-, frequency- and transform-domain.

### **1.1. Basic Definitions**

## **1.1.1. Discrete and Digital Signals 1.1.1.1. Basic Definitions**

Signals may be classified into four categories depending on the characteristics of **the time-variable** and **values** they can take:

- continuous-time signals (analogue signals),
- discrete-time signals,
- continuous-valued signals,
- discrete-valued signals.

### **Continuous-time (analogue) signals:**

Time: defined for every value of time  $t \in R$ , **Descriptions:** functions of a continuous variable *t*: f(t), Notes: they take on values in the continuous interval  $f(t) \in (-a,b)$  for  $a, b \to \infty$ .  $f(t) \in C$ Note:  $f(t) = \sigma + j\omega$  $\sigma \in (-a,b)$  and  $\omega \in (-a,b)$  $a, b \rightarrow \infty$ 

### **Discrete-time signals:**

Time: defined <u>only</u> at discrete values of time: t = nT, Descriptions: sequences of real or complex numbers f(nT) = f(n), Note A.: they take on values in the continuous interval  $f(n) \in (-a,b)$  for  $a, b \rightarrow \infty$ , Note B.: sampling of analogue signals:

- sampling interval, period: T,
- sampling rate: *number of samples per second*,
- sampling frequency (Hz):  $f_s = 1/T$ .

**Continuous-valued signals**:

Time: they are defined <u>for every value of time</u> or only at discrete values of time,
Value: they can take on <u>all possible values</u> on finite or infinite range,
Descriptions: functions of a continuous variable or sequences of numbers.

### **Discrete-valued signals:**

Time: they are defined for <u>every value of time</u> or only at discrete values of time,
Value: they can take on values from <u>a finite set</u> of possible values,
Descriptions: functions of a continuous variable or sequences of numbers.

Digital filter theory:

Discrete-time signals:

Definition and descriptions: defined only at <u>discrete</u> values of time and they can take <u>all</u> possible values on finite or infinite range (<u>sequences</u> of real or complex numbers: f(n)),

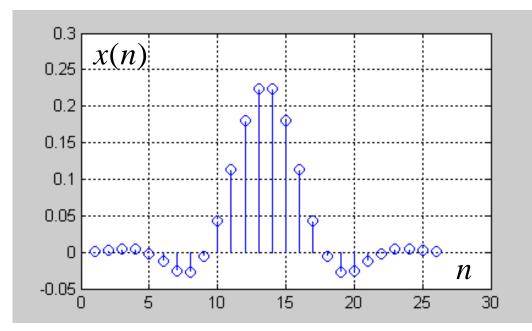
Note: sampling process, constant sampling period.

 Digital signals:
 Definition and descriptions: <u>discrete-time and</u> <u>discrete-valued signals</u> (i.e. discrete -time signals taking on values from a finite set of possible values),
 Note: sampling, quatizing and coding process i.e. process of analogue-to-digital conversion.

# 1.1.1.2. Discrete-Time Signal RepresentationsA. Functional representation:

$$x(n) = \begin{cases} 1 & for \quad n = 1, 3 \\ 6 & for \quad n = 0, 7 \\ 0 & elsewhere \end{cases} \quad y(n) = \begin{cases} 0 & for \quad n < 0 \\ 0, 6^n & for \quad n = 0, 1, \dots, 102 \\ 1 & n > 102 \end{cases}$$

**B. Graphical** representation



### **C.** Tabular representation:

| n    | • • • | -2   | -1   | 0    | 1    | 2    |
|------|-------|------|------|------|------|------|
| x(n) | •••   | 0.12 | 2.01 | 1.78 | 5.23 | 0.12 |

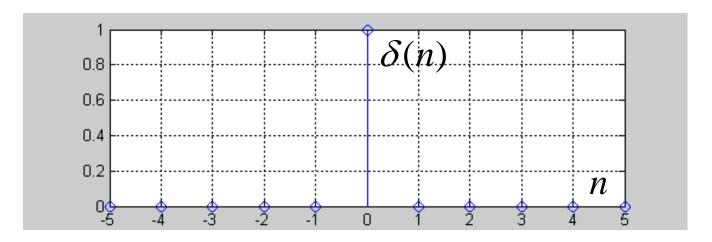
**D. Sequence representation:** 

 $x(n) = \{ \dots 0.12 \ 2.01 \ 1.78 \ 5.23 \ 0.12 \ \dots \}$ 

### **1.1.1.3. Elementary Discrete-Time Signals**

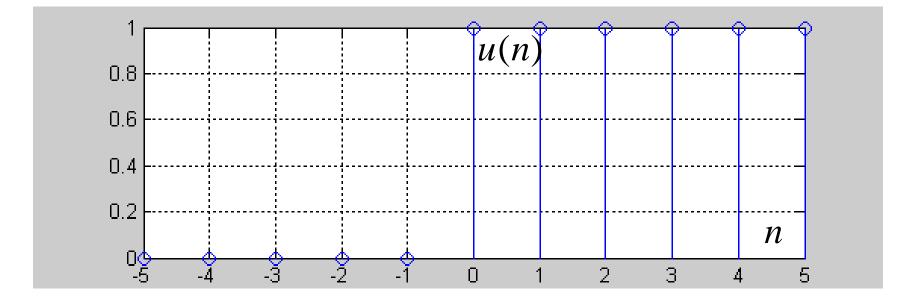
## **A. Unit sample sequence** (unit sample, unit impulse, unit impulse signal)

$$\delta(n) = \begin{cases} 1 & \text{for } n = 0\\ 0 & \text{for } n \neq 0 \end{cases}$$



**B. Unit step signal** (unit step, Heaviside step sequence)

$$u(n) = \begin{cases} 1 & \text{for } n \ge 0\\ 0 & \text{for } n < 0 \end{cases}$$



### C. Complex-valued exponential signal

(complex sinusoidal sequence, complex phasor)

$$x(n) = e^{j\omega nT}, |x(n)| = 1, \arg[x(n)] = \omega nT = 2\pi f.nT = \frac{2\pi f.n}{f_s}$$

where

$$\omega \in R$$
,  $n \in N$ ,  $j = \sqrt{-1}$  is imaginary unit

and

T is sampling period and  $f_s$  is sampling frequency.

### **1.1.2. Discrete-Time Systems. Definition**

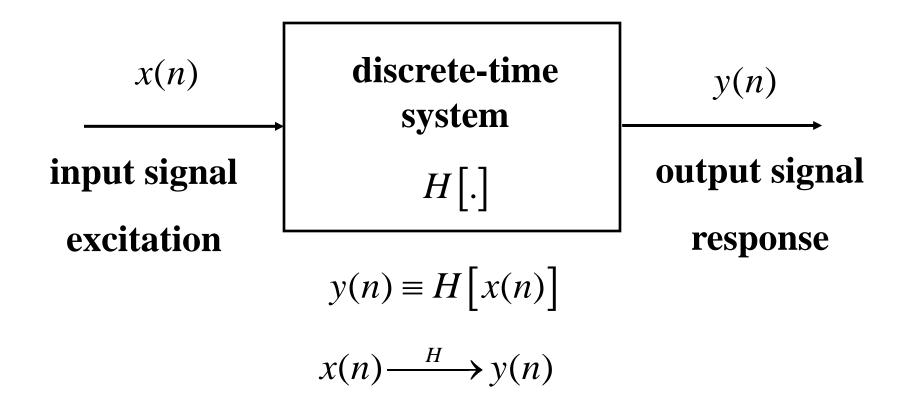
A discrete-time system is a device or algorithm that operates on a discrete-time signal called *the input* or *excitation* (e.g. x(n)), according *to some rule* (e.g. H[.]) to produce another discrete-time signal called *the output* or *response* (e.g. y(n)).

$$y(n) \equiv H\big[x(n)\big]$$

This expression denotes also the transformation *H*[.] (also called operator or mapping) or processing performed by the system on *x*(*n*) to produce *y*(*n*).

**Input-Output Model of Discrete-Time System** 

(input-output relationship description)



## 1.1.3. Classification of Discrete-Time Systems

## 1.1.3.1. Static vs. Dynamic Systems. Definition

A discrete-time system is called *static* or *memoryless* if its output at any time instant *n* depends on the input sample at the same time, but not on the past or future samples of the input. In the other case, the system is said to be *dynamic* or to have *memory*.

If the output of a system at time *n* is completly determined by the input samples in the interval from *n*-*N* to *n* ( $N \ge 0$ ), the system is said to have memory of *duration N*.

If N = 0, the system is *static* or *memoryless*.

If  $0 < N < \infty$ , the system is said to have *finite memory*.

If  $N \to \infty$ , the system is said to have *infinite memory*.

### **Examples:**

The static (memoryless) systems:

 $y(n) = nx(n) + bx^3(n)$ 

The dynamic systems with finite memory:

$$y(n) = \sum_{k=0}^{N} h(k) x(n-k)$$

The dynamic system with infinite memory:

$$y(n) = \sum_{k=0}^{\infty} h(k) x(n-k)$$

### 1.1.3.2. Time-Invariant vs. Time-Variable Systems. Definition

A discrete-time system is called *time-invariant* if its input-output characteristics do not change with time. In the other case, the system is called *time-variable*.

**Definition.** A relaxed system H[.] is *time-* or *shift-invariant* if only if

$$y(n) \equiv H[x(n)] \qquad \qquad x(n) \xrightarrow{H} y(n)$$

implies that

$$y(n-k) \equiv H\left[x(n-k)\right] \quad x(n-k) \xrightarrow{H} y(n-k)$$

for *every input signal* x(n) and *every time shift* k.

### **Examples:**

The time-invariant systems:

$$y(n) = x(n) + bx^{3}(n)$$
$$y(n) = \sum_{k=0}^{N} h(k)x(n-k)$$

The time-variable systems:

$$y(n) = nx(n) + bx^{3}(n-1)$$
$$y(n) = \sum_{k=0}^{N} h^{N-n}(k)x(n-k)$$

### 1.1.3.3. Linear vs. Non-linear Systems. Definition

A discrete-time system is called *linear* if only if it satisfies the *linear superposition principle*. In the other case, the system is called *non-linear*.

**Definition.** A relaxed system H[.] is *linear* if only if

$$H[a_1x_1(n) + a_2x_2(n)] = a_1H[x_1(n)] + a_2H[x_2(n)]$$

for any arbitrary input sequences  $x_1(n)$  and  $x_2(n)$ , and any arbitrary constants  $a_1$  and  $a_2$ .

### **Examples:**

The linear systems:

$$y(n) = \sum_{k=0}^{N} h(k)x(n-k) \qquad y(n) = x(n^2) + bx(n-k)$$

The non-linear systems:

$$y(n) = nx(n) + bx^{3}(n-1)$$
  $y(n) = \sum_{k=0}^{N} h(k)x(n-k)x(n-k+1)$ 

### 1.1.3.4. Causal vs. Non-causal Systems. Definition

**Definition.** A system is said to be *causal* if the output of the system at any time n (i.e., y(n)) depends only on present and past inputs (i.e., x(n), x(n-1), x(n-2), ... ). In mathematical terms, the output of a *causal* system satisfies an equation of the form

$$y(n) = F[x(n), x(n-1), x(n-2), \cdots]$$

where F[.] is some arbitrary function. If a system does not satisfy this definition, it is called *non-causal*.

### **Examples:**

The causal system:

$$y(n) = \sum_{k=0}^{N} h(k)x(n-k) \qquad y(n) = x^{2}(n) + bx(n-k)$$

The non-causal system:

$$y(n) = nx(n+1) + bx^{3}(n-1)$$
  $y(n) = \sum_{k=-10}^{10} h(k)x(n-k)$ 

### 1.1.3.5. Stable vs. Unstable of Systems. Definitions

An arbitrary relaxed system is said to be **bounded input - bounded output (BIBO) stable** if and only if every bounded input produces the bounded output. It means, that there exist some finite numbers say  $M_x$  and  $M_y$ , such that

$$|x(n)| \le M_x < \infty \implies |y(n)| \le M_y < \infty$$

for all *n*. If for some bounded input sequence x(n), the output y(n) is unbounded (infinite), the system is classified as *unstable*.

### **Examples:**

The stable systems:

$$y(n) = \sum_{k=0}^{N} h(k)x(n-k) \qquad y(n) = x(n^2) + 3x(n-k)$$

The unstable system:

$$y(n) = 3^n x^3 (n-1)$$

## **1.1.3.6. Recursive vs. Non-recursive Systems. Definitions**

A system whose output y(n) at time *n* depends on any number of the past outputs values (e.g. y(n-1), y(n-2), ...), is called a *recursive system*. Then, the output of a causal recursive system can be expressed in general as

$$y(n) = F[y(n-1), y(n-2), \dots, y(n-N), x(n), x(n-1), \dots, x(n-M)]$$

where F[.] is some arbitrary function. In contrast, if y(n) at time n depends only on the present and past inputs

$$y(n) = F[x(n), x(n-1), ..., x(n-M)]$$

then such a system is called *nonrecursive*.

### **Examples:**

The nonrecursive system:

$$y(n) = \sum_{k=0}^{N} h(k)x(n-k)$$

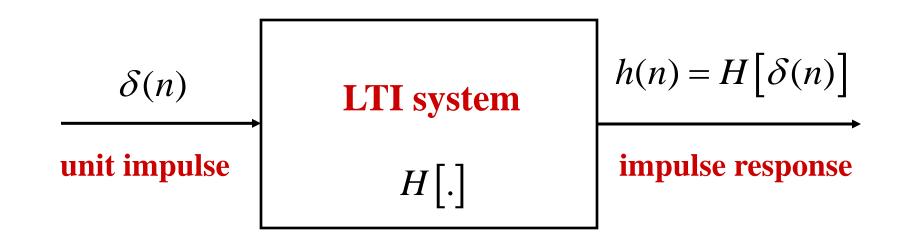
The recursive system:

$$y(n) = \sum_{k=0}^{N} b(k) x(n-k) - \sum_{k=1}^{N} a(k) y(n-k)$$

## **1.2. Linear-Discrete Time Time-Invariant** Systems (LTI Systems)

### **1.2.1. Time-Domain Representation**

### **1.2.1.1 Impulse Response and Convolution**

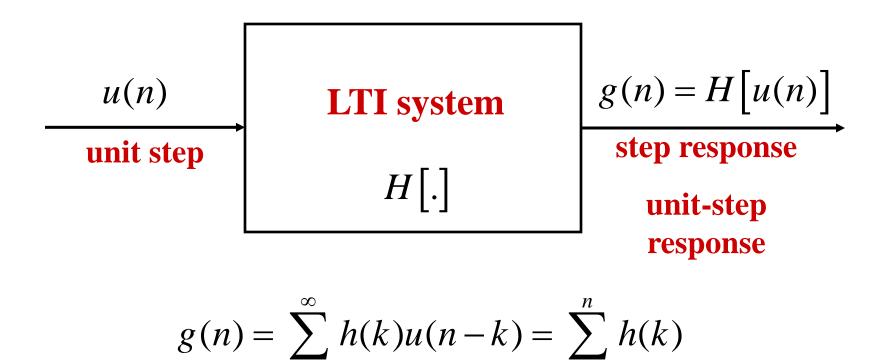


LTI system description by **convolution** (convolution sum):

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k) = \sum_{k=-\infty}^{\infty} x(k)h(n-k) = h(n)^* x(n) = x(n)^* h(n)$$

Viewed mathematically, the convolution operation satisfies the commutative law.

### 1.2.1.2. Step Response



These expressions relate the impulse response to the step response of the system.

 $k = -\infty$ 

 $k = -\infty$ 

## 1.2.2. Impulse Response Property and Classification of LTI Systems

### 1.2.2.1. Causal LTI Systems

A relaxed LTI system is *causal* if and only if its impulse response is zero for negative values of *n* , i.e.

$$h(n) = 0 \text{ for } n < 0$$

Then, the two equivalent forms of the convolution formula can be obtained for the causal LTI system:

$$y(n) = \sum_{k=0}^{\infty} h(k) x(n-k) = \sum_{k=-\infty}^{n} x(k) h(n-k)$$

### 1.2.2.2. Stable LTI Systems

A LTI system is *stable* if its impulse response is absolutely summable, i.e.

$$\sum_{k=-\infty}^{\infty} \left| h(k) \right|^2 < \infty$$

### 1.2.2.3. Finite Impulse Response (FIR) LTI Systems and Infinite Impulse Response (IIR) LTI Systems

Causal **FIR** LTI systems:

$$y(n) = \sum_{k=0}^{N} h(k) x(n-k)$$

**IIR** LTI systems:

$$y(n) = \sum_{k=0}^{\infty} h(k) x(n-k)$$

### **1.2.2.4. Recursive and Nonrecursive LTI Systems**

Causal *nonrecursive* LTI:

$$y(n) = \sum_{k=0}^{N} h(k) x(n-k)$$

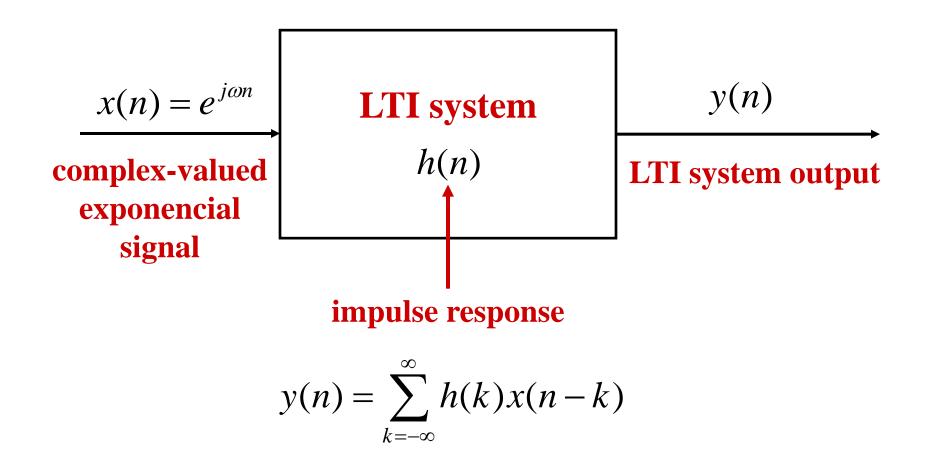
Causal *recursive* LTI:

$$y(n) = \sum_{k=0}^{N} b(k) x(n-k) - \sum_{k=1}^{M} a(k) y(n-k)$$

LTI systems:

characterized by *constant-coefficient difference equations* 

## 1.3. Frequency-Domain Representation of Discrete Signals and LTI Systems



### LTI system output:

$$y(n) = \sum_{k=-\infty}^{\infty} h(k)x(n-k) = \sum_{k=-\infty}^{\infty} h(k)e^{j\omega(n-k)} =$$
$$= \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}e^{j\omega n} = e^{j\omega n} \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$
$$y(n) = e^{j\omega n} H(e^{j\omega})$$

Frequency response:

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k}$$

$$H(e^{j\omega}) = \left| H(e^{j\omega}) \right| e^{j\phi(\omega)}$$

$$H(e^{j\omega}) = \operatorname{Re}\left[H(e^{j\omega})\right] + j\operatorname{Im}\left[H(e^{j\omega})\right]$$

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k) \cos \omega k + j \left[ -\sum_{k=-\infty}^{\infty} h(k) \sin \omega k \right]$$

 $\operatorname{Re}\left[H(e^{j\omega})\right] = \sum_{k=-\infty}^{\infty} h(k) \cos \omega k$ 

 $\operatorname{Im}\left[H(e^{j\omega})\right] = -\sum_{k=-\infty}^{\infty} h(k)\sin\omega k$ 

#### Magnitude response:

$$\left|H(e^{j\omega})\right| = \sqrt{\operatorname{Re}\left[H(e^{j\omega})\right]^2 + \operatorname{Im}\left[H(e^{j\omega})\right]^2}$$

Phase response:

$$\phi(\omega) = \arg\left[H(e^{j\omega})\right] = \operatorname{arctg} \frac{\operatorname{Im}\left[H(e^{j\omega})\right]}{\operatorname{Re}\left[H(e^{j\omega})\right]}$$

Group delay function:

$$\tau(\omega) = -\frac{d\phi(\omega)}{d\omega}$$

## **1.3.1.** Comments on relationship between the impulse response and frequency response

The important property of *the frequency response* 

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k} = \sum_{k=-\infty}^{\infty} h(k)e^{-j[\omega+2l\pi]} = H(e^{j[\omega+2l\pi]})$$

is fact that this function *is periodic with period*  $2\pi$ .

In fact, we may view the previous expression as the exponential Fourier series expansion for  $H(e^{j\omega})$ , with h(k) as the Fourier series coefficients. Consequently, the unit impulse response h(k) is related to  $H(e^{j\omega})$  through the integral expression

$$h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$$

### **1.3.2.** Comments on symmetry properties

For LTI systems with real-valued impulse response, the magnitude response, phase responses, the real component of and the imaginary component of  $H(e^{j\omega})$  possess these symmetry properties:

The real component: even function of  $\omega$  periodic with period  $2\pi$ 

$$\operatorname{Re}\left[H(e^{-j\omega})\right] = \operatorname{Re}\left[H(e^{j\omega})\right]$$

The imaginary component: *odd function* of  $\omega$  periodic with period  $2\pi$  $\operatorname{Im}\left[H(e^{-j\omega})\right] = -\operatorname{Im}\left[H(e^{j\omega})\right]$ 

The magnitude response: even function of  $\omega$  periodic with period  $2\pi$ 

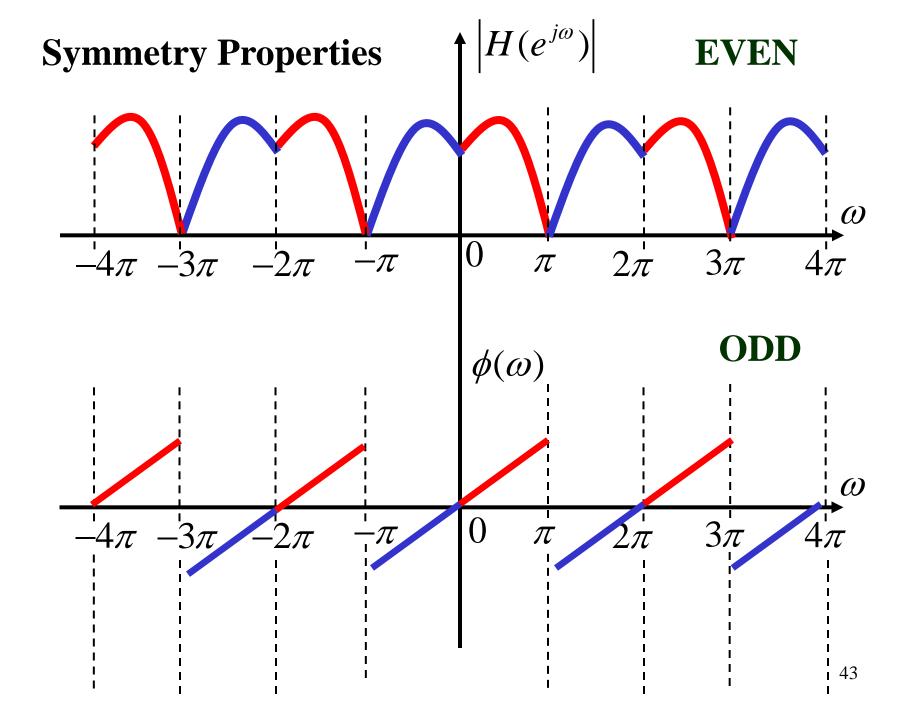
$$\left|H(e^{j\omega})\right| = \left|H(e^{-j\omega})\right|$$

The phase response: odd function of  $\omega$  periodic with period  $2\pi$ 

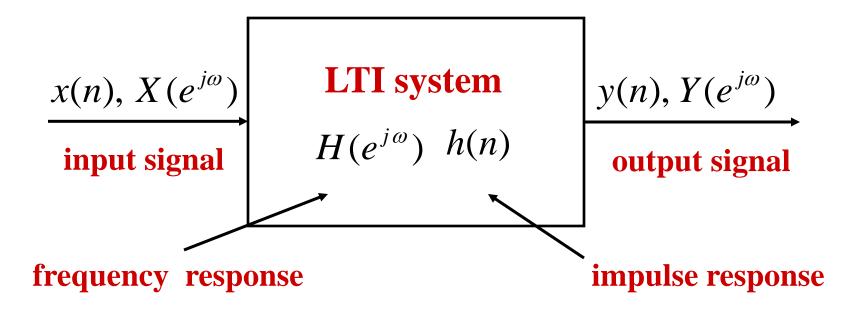
$$\arg\left[H(e^{-j\omega})\right] = -\arg\left[H(e^{j\omega})\right]$$

### **Consequence:**

If we known  $|H(e^{j\omega})|$  and  $\phi(\omega)$  for  $0 \le \omega \le \pi$ , we can describe these functions (i.e. also  $H(e^{j\omega})$ ) for all values of  $\omega$ .



### **1.3.3. Comments on Fourier Transform of Discrete Signals and Frequency-Domain Description of LTI Systems**



The input signal x(n) and the spectrum of x(n):

$$X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} x(k)e^{-j\omega k} \qquad x(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n} d\omega$$

The output signal y(n) and the spectrum of y(n):

$$Y(e^{j\omega}) = \sum_{k=-\infty}^{\infty} y(k)e^{-j\omega k} \quad y(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} Y(e^{j\omega})e^{j\omega n} d\omega$$

**The impulse response** h(n) and the spectrum of h(n):

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k} \quad h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$$
  
Frequency-domain description of LTI system:  
$$Y(e^{j\omega}) = H(e^{j\omega})X(e^{j\omega})$$

45

### **1.3.4.** Comments on Normalized Frequency

It is often desirable to express the frequency response of an LTI system in terms of units of frequency that involve sampling interval *T*. In this case, the expressions:

$$H(e^{j\omega}) = \sum_{k=-\infty}^{\infty} h(k)e^{-j\omega k} \quad h(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega})e^{j\omega n} d\omega$$

are modified to the form:

$$H(e^{j\omega T}) = \sum_{k=-\infty}^{\infty} h(kT)e^{-j\omega kT}$$

$$h(nT) = \frac{T}{2\pi} \int_{-\pi/T}^{\pi/T} H(e^{j\omega T}) e^{j\omega nT} d\omega$$

 $H(e^{j\omega T})$  is periodic with period  $2\pi/T = 2\pi F$ , where F is sampling frequency.

Solution: normalized frequency approach:  $F/2 \rightarrow \pi$ 

#### **Example:**

 $F = 100kHz \quad F/2 = 50kHz \quad 50kHz \to \pi$   $f_1 = 20kHz \quad \omega_1 = \frac{20x10^3}{50x10^3}\pi = \frac{2\pi}{5} = 0.4\pi$   $f_2 = 25kHz \quad \omega_2 = \frac{25x10^3}{50x10^3}\pi = \frac{\pi}{2} = 0.5\pi$